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Abstract 

A new method for the minimization of multiple-valued 
input Boolean functions is presented. The method is 
based on the reduction of logic minimization problem to 
graph coloring, 'applied to the graph of incompatibility 
of implicants. In this approach, two NP-complete prob- 
lems encountered in the minimization of Boolean func- 
tions, i.e., the generation of prime implicants and the 
covering problem, are reduced to a single, and better 
understood, graph coloring problem. A special type of 
implicants, called Minimally Split Product Implicants, 
are generated from an arbitrary set of input cubes that 
allow optimum results to be obtained. An important re- 
sult of this method is that it is analytical, rather than 
heuristic, and gives more insight into a larger class of 
logic synthesis problems, such as input encoding and 
Boolean decomposition. 

1. Introduction 

Minimization of multiple-valued input Boolean func- 
tions is of great practical importance in modern synthe- 
sis of digital VLSI circuits. Its applications include min- 
imization of PLAs with input decoders [Sas81, Sas841, 
symbolic minimization of logic functions [DeM86], 
and Boolean decomposition of PLAs [Dev88, Yan89a, 
Yan89bl. 

The logic minimization programs available today, such 
as MINI [Hon74] and Espresso-MV [Rud87], are based 
on heuristic iterative improvement techniques, and, in 
general, give suboptimum solution with no informa- 
tion on how far it is from the global minimum. Fur- 
thermore, if the input is a set of arbitrary cubes, in- 
stead of minterms, the solution depends on the in- 
put description. The minimization technique presented 
in this paper is based on the reduction of logic mini- 
mization problem to graph coloring [Ngu87], extended 
to multiple-valued input , incompletely specified logic 
functions. A special set of implicants is generated from 
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an arbitrary set of input cubes. The relations among 
the implicants in this initial cover are represented by a 
graph of incompatibility of implicants. By coloring the 
graph nodes with minimum number of colors the min- 
imum cover of the Boolean function is obtained. This 
method can be applied to single and multiple output 
functions, both completely and incompletely specified. 

2. Basic Definitions 

Let X i  be a multiple-valued variable, and Pi = 
{0,1, . . . ,pi - 1) be a set of values it may assume. A 
multiple-valued Boolean function with n inputs is de- 
fined as: 

f(X1, ..., X,) : PI x Pz x . . . x P, 4 B ,  

where B = {0,1, *} represents the binary value of the 
function. Let Si 5 Pi.  Then X F  = 1 if X ;  E Si,  
otherwise it is 0. X f '  is called a literal of variable X i .  
Boolean product of literals is called a product term or 
a cube. 

Example 1: Cube C = X1(*'1'3) x2 (OJ) x3 repre- 
sents a product term of three four-valued variables, 
X1,XZlX3. It evaluates to 1 if ( X I  = O or X 1  = 1 
or XI = 3) and ( X 2  = 0 or X 2  = 2) and (X, = 1); oth- 
erwise it evaluates to 0. In the positional cube notation 
this cube can be written as {1101-1010-0100}. 

We assume that the reader is familiar with such ba- 
sic definitions as Boolean cover, the U I V ( f ) ,  U F F ( f )  
and D C ( f )  sets, prime implicants, essential prime im- 
plicants, etc. We also assume readers familiarity with 
basic operations on cubes and arrays of cubes, such as: 
union, intersection, disjoint sharp, and consensus. For- 
mal definitions of these terms can be found in [Rud87]. 
Here we only define those terms which are central to 
our algorithm. 

Definition 1: Let C1 = Sf' . . ' Xzn and Cz = S y  . . . 
X> be cubes, where Si , Ti C Pi, and n is the number 
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of input variables. The matching, or supercube, of C1 
and Car denoted Cl$CZ, is the cube C = XfLUT1 - - 
XznuTn. It is the smallest cube containing both C1 
and Cz. The matching operation is commutative and 
associative, and the result is always a cube. 

Definition 2: Two product implicants I1 and Iz of 
function f are compatible if IlrSI, is also an implicant 
of function f ,  i.e., if (11$12) n O F F (  f )  = 0. Product 
implicants which are not compatible are called incom- 
patible. A set of product implicants P I  is called a set 
of compatible pairs when 

V( I , ,  I j )  c P I  ( I , $ I j )  n O F F (  f )  = 0. 

A set of product implicants P I  is called a compatible 
set when 

( $ I E P I I )  n OFF(f )  = 0. 
Notice that any compatible set is also a set of compat- 
ible pairs, but the opposite is not necessarily true. 

3. Multiple-valued Minimization 

The objective of multiple-valued minimization is to 
determine a minimum cardinality cover of a given 
multiple-valued input Boolean function. In this section 
we formulate this problem as a graph coloring problem. 

Let G I ( f )  = ( P I ,  E )  be a graph whose set of nodes 
P I  represents product implicants of function f ,  and 
whose set of edges E represents incompatibility rela- 
tions between the corresponding pairs of cubes, such 
that e = ( I 1 , I z )  E PI iff 11 is incompatible with Iz .  
The graph GI(  f )  is called a Graph of Incompatibility of 
Implicants. 

Definition 3: A proper coloring of a graph is the col- 
oring of its nodes such that no two adjacent nodes are 
assigned the same color. A compatible coloring of the 
graph G I ( f )  is a proper coloring such that each set of 
nodes with the same color represents a compatible set 
of product implicants. 

Theorem 1: The minimum number of compatible sets 
of product implicants of function f is equal to the num- 
ber of prime implicants in the minimal cover of f .  

Proofs of the theorems can be found in [Cie89]. 

An important conclusion from this theorem is that find- 
ing a minimum cardinality cover for a given function 
f is equivalent to finding a compatible coloring of its 
graph G I ( f )  with the minimum number of colors. Fur- 
thermore, the minimum number of colors obtained by 
the proper coloring of G I ( f )  gives lower bound on the 
minimum solution. 

4. Minimally Split Product Implicants 

In general, the nodes of graph G I (  f )  may represent an 
arbitrary set of input cubes. If the cubes are minterms, 
then an optimum compatible coloring of G I ( f )  is also 
an optimum solution to  the logic minimization of func- 
tion f .  The reason for this is that the minterms can 
be grouped in all possible ways to  form other cubes, 
and the optimum coloring gives the grouping with min- 
imum number of implicants. For large functions, how- 
ever, it is impractical to create a graph whose nodes 
represent minterms, as their number can be in the or- 
der of 2n. If the on-set O N ( f )  consists of arbitrary 
cubes, rather than minterms, the resulting graph G I (  f )  
will have smaller number of nodes. This decreases the 
complexity of the minimization problem and speeds up 
graph coloring. However, the optimality of the resulting 
solution cannot be guaranteed in this case. 

We introduce a new class of product implicants, called 
Minimally Split Product Implicants, M S I .  The M S I  
set is obtained by splitting an  initial set of cubes I N C  
into a smallest possible set of fundamental cubes from 
which a minimum cover can be obtained. The main 
idea behind the splitting is to reshape a set of cubes 
in the initial cover into a new set of cubes from which 
all prime implicants, and therefore all Boolean covers 
of the function, can be constructed. As a result, the 
cardinality of the M S I  set is significantly smaller than 
that of minterms, while it allows to obtain a globally 
minimum cover. 

Definition 4: Consider a cube C and a set of cubes 
S = iss}. Cube C is called splzttable with respect to 
set SI if 

c = U s,. 
S.#C 

The procedure to create a set of Minimally Split Prod- 
uct Implicants from an arbitrary set of input cubes 
I N C  is outlined below. Each cube in the initial cover of 
f is examined by computing the consensuses (CONS) 
of this cube with all other cubes, and checking if the 
cube is splittable. The splitting is repeated recursively, 
until the cubes cannot be split any further. 

create-msi( I N C )  
Initialize: M S I  = 0. 
Make cubes in I N C  mutuallv disjoint; 
For each cube CC E I N C  d o :  

Find a set of coiiseiisuses, C O N S ,  of CC with I N C ;  
Find a set of products, P R O D ,  of CC with C O N S ;  
I f  CC is splittable w.r.to PROD then 

else M S I  = MSI U C C .  
M S I  = i l l S I  U splat_product( P R O D )  

end{for each} 
Return ( M S I ) .  
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split -product( PROD) 
Initialise: R = 0. 
For each cube EC E PROD do: 

Find a set of products, APROD, of EC with PROD; 
If EC is splittable then 

else 
R = R U rpZi t -pduct (APROD) 

if 3 cube C, splittable, s.t. EC E C then 
R = R U E C  

end{for each} 
Return (R). 

Example 2: Consider the multiple-valued input func- 

X(')Yt3) .  Fig. l (a)  shows the input set of cubes, I N C ,  
that covers the function. Fig. l(b) - (d) illustrate the 
splitting of cube a, and Fig. l(e) - (g) show the split- 
ting of the remaining cubes, b, c, and d, respectively. 
The resulting M S I  set is shown in Fig. l(h). 

tion f = x{%W)y{o) + ~ I % 1 3 3 ) y ( l )  + x I ~ ) Y { ~ )  + 

X X X 

(a) INC (b) CONS for cube a (c) PROD for cube a 

X 

(d) cubea split 

X 

(e) cubeb split 

X 

X 

(a) cube d (h) the MSI set 

Figure 1: Generation of the M S I  set. 

In general, the set of cubes created with this algorithm 
may not be disjoint. As a result, its cardinality may 
be smaller than that of the Disjoint Minimal Product 
Implicant set introduced in PALMINI [Ngu87]. This, in 
turn, leads to  a faster graph coloring and, consequently, 
to a faster logic minimisation. 

Finally, we have the following theorem which forms the 
basis for our multiple-valued logic minimisation. It 

holds for both completely and incompletely specified 
functions. 

Theorem 2: An optimum solution to a compatible 
graph coloring of graph G I ( f ) ,  whose nodes correspond 
to  a set of Minimally Split Product Implicants of func- 
tion f ,  gives a minimum cardinality cover of f.  

5. The Algorithm 

Input to the algorithm is an arbitrary set of cubes spec- 
ified by the sets O N ( f )  and D C ( f ) .  The O F F ( f )  set 
is then obtained from the two sets by complementation. 
The cubes in O N ( f )  are expanded to larger cubes to 
reduce complexity of the procedure. During the expan- 
sion process, the off-cubes, dc-cubes and the expanded 
on-cubes are used to block further expansion. Option- 
ally, the dc cubes may also be expanded. A set of Min- 
imally Split Product Implicants and the corresponding 
graph of incompatibility of implicants, G I ( f ) ,  is con- 
structed. Our graph coloring algorithm of G I ( ! )  pre- 
serves compatibility of implicants and allows for multi- 
coloring, whereby each node can be assigned more than 
one color. As a result, the cubes in the final cover may 
overlap with each other, which further contributes to 
the minimisation of literal count. 

Example 3: Consider again the function f in Example 
2. The set of Minimally Split Product Implicants o f f  
is shown in Fig. 2(a); Fig. 2(b) shows the graph G I ( f )  
constructed with this set of implicants. This graph can 
be colored with three colors, that correspond to the 
three implicants in the minimum cover of f ,  shown in 
Fig. 2(c) 

f = x(O>3)yIoJ) + X(l)y( lJ l  + x(2ly{",3)* 

Each implicant is a compatible set of cubes, and the 
solution is optimum. For comparison, if the function 
were minimbed using the I N C  set, instead of M S I ,  
the minimum number of colors needed to properly color 
the G I ( f )  graph would be four. 

6. Results and Conclusions 

The algorithm has been implemented as a computer 
program UMini, written in C. The input to the program 
is consistent with Espresso-MV. UMini has been tested 
on a number of benchmark examples, and compared 
to Espresso-MV. The preliminary results are given in 
Table I, showing the CPU time on a VAX 11/785 com- 
puter. The last column in the table indicates the ratio 
of the number of Minimally Split Product Implicants 
to the number of minterms for a given function. Notice 
that for large functions this ratio is significantly smaller 
than 1. These results indicate that UMini is faster than 
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X Y  
a1 = 1001 1000 

a2 = 0010 1000 
b2 = 0100 0100 
c = 0100 0010 
d = 0010 0001 

bl = 1001 0100 

(a) Minimally Split Product lmplicant set 

Espre 
final 
- 

X 

D-MV 
time 

Figure 2: Minimisation with the MSI set. 

Espresso-MV for sparse functions, but slower for dense 
functions. We also observed that UMini was faster than 
Espresso-MV on functions with multiple-valued, rather 
than binary, inputs. 

We are currently working on a new version of UMini. 
In this new program essential and secondary essential 
prime implicants are extracted before generating graph 
G l ( f ) ,  and a set of input cubes is allowed to be nondis- 
joint. 

Our approach to multiple-valued minimization, pre- 
sented in this paper, is quite general and can be used 
for a larger class of logic synthesis problems, such as 
state encoding, boolean decomposition, and multi-level 
minimisation Existence of parallel and distributed algo- 
rithms for graph coloring makes this approach particu- 
larly attractive. 
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