
Multiple-Valued Boolean Minimization
Based on Graph Coloring

Maciej J. Ciesielski Saeyang Yang Marek A. Perkowski
Dept. of Electrical & Computer Engineering Department of Electrical Engineering

University of Massachusetts
Amherst, MA 01003

Abstract

A new method for the minimization of multiple-valued
input Boolean functions is presented. The method is
based on the reduction of logic minimization problem to
graph coloring, 'applied to the graph of incompatibility
of implicants. In this approach, two NP-complete prob-
lems encountered in the minimization of Boolean func-
tions, i.e., the generation of prime implicants and the
covering problem, are reduced to a single, and better
understood, graph coloring problem. A special type of
implicants, called Minimally Split Product Implicants,
are generated from an arbitrary set of input cubes that
allow optimum results to be obtained. An important re-
sult of this method is that it is analytical, rather than
heuristic, and gives more insight into a larger class of
logic synthesis problems, such as input encoding and
Boolean decomposition.

1. Introduction

Minimization of multiple-valued input Boolean func-
tions is of great practical importance in modern synthe-
sis of digital VLSI circuits. Its applications include min-
imization of PLAs with input decoders [Sas81, Sas841,
symbolic minimization of logic functions [DeM86],
and Boolean decomposition of PLAs [Dev88, Yan89a,
Yan89bl.

The logic minimization programs available today, such
as MINI [Hon74] and Espresso-MV [Rud87], are based
on heuristic iterative improvement techniques, and, in
general, give suboptimum solution with no informa-
tion on how far it is from the global minimum. Fur-
thermore, if the input is a set of arbitrary cubes, in-
stead of minterms, the solution depends on the in-
put description. The minimization technique presented
in this paper is based on the reduction of logic mini-
mization problem to graph coloring [Ngu87], extended
to multiple-valued input , incompletely specified logic
functions. A special set of implicants is generated from

Portland State University
Portland, OR 97207

an arbitrary set of input cubes. The relations among
the implicants in this initial cover are represented by a
graph of incompatibility of implicants. By coloring the
graph nodes with minimum number of colors the min-
imum cover of the Boolean function is obtained. This
method can be applied to single and multiple output
functions, both completely and incompletely specified.

2. Basic Definitions

Let X i be a multiple-valued variable, and Pi =
{0,1, . . . ,pi - 1) be a set of values it may assume. A
multiple-valued Boolean function with n inputs is de-
fined as:

f(X1, ..., X,) : PI x Pz x . . . x P, 4 B ,

where B = {0,1, *} represents the binary value of the
function. Let Si 5 Pi. Then X F = 1 if X ; E Si,
otherwise it is 0. X f ' is called a literal of variable X i .
Boolean product of literals is called a product term or
a cube.

Example 1: Cube C = X1(*'1'3) x2 (OJ) x3 repre-
sents a product term of three four-valued variables,
X1,XZlX3. It evaluates to 1 if (X I = O or X 1 = 1
or XI = 3) and (X 2 = 0 or X 2 = 2) and (X, = 1); oth-
erwise it evaluates to 0. In the positional cube notation
this cube can be written as {1101-1010-0100}.

We assume that the reader is familiar with such ba-
sic definitions as Boolean cover, the U I V (f) , U F F (f)
and D C (f) sets, prime implicants, essential prime im-
plicants, etc. We also assume readers familiarity with
basic operations on cubes and arrays of cubes, such as:
union, intersection, disjoint sharp, and consensus. For-
mal definitions of these terms can be found in [Rud87].
Here we only define those terms which are central to
our algorithm.

Definition 1: Let C1 = Sf' . . ' Xzn and Cz = S y . . .
X> be cubes, where Si , Ti C Pi, and n is the number

CH2794-6/89/oooo/o262$0l.CHlO 1989 IEEE 262

of input variables. The matching, or supercube, of C1
and Car denoted Cl$CZ, is the cube C = XfLUT1 - -
XznuTn. It is the smallest cube containing both C1
and Cz. The matching operation is commutative and
associative, and the result is always a cube.

Definition 2: Two product implicants I1 and Iz of
function f are compatible if IlrSI, is also an implicant
of function f , i.e., if (11$12) n O F F (f) = 0. Product
implicants which are not compatible are called incom-
patible. A set of product implicants P I is called a set
of compatible pairs when

V(I , , I j) c P I (I , $ I j) n O F F (f) = 0.

A set of product implicants P I is called a compatible
set when

($ I E P I I) n OFF(f) = 0.
Notice that any compatible set is also a set of compat-
ible pairs, but the opposite is not necessarily true.

3. Multiple-valued Minimization

The objective of multiple-valued minimization is to
determine a minimum cardinality cover of a given
multiple-valued input Boolean function. In this section
we formulate this problem as a graph coloring problem.

Let G I (f) = (P I , E) be a graph whose set of nodes
P I represents product implicants of function f , and
whose set of edges E represents incompatibility rela-
tions between the corresponding pairs of cubes, such
that e = (I 1 , I z) E PI iff 11 is incompatible with Iz .
The graph GI(f) is called a Graph of Incompatibility of
Implicants.

Definition 3: A proper coloring of a graph is the col-
oring of its nodes such that no two adjacent nodes are
assigned the same color. A compatible coloring of the
graph G I (f) is a proper coloring such that each set of
nodes with the same color represents a compatible set
of product implicants.

Theorem 1: The minimum number of compatible sets
of product implicants of function f is equal to the num-
ber of prime implicants in the minimal cover of f .

Proofs of the theorems can be found in [Cie89].

An important conclusion from this theorem is that find-
ing a minimum cardinality cover for a given function
f is equivalent to finding a compatible coloring of its
graph G I (f) with the minimum number of colors. Fur-
thermore, the minimum number of colors obtained by
the proper coloring of G I (f) gives lower bound on the
minimum solution.

4. Minimally Split Product Implicants

In general, the nodes of graph G I (f) may represent an
arbitrary set of input cubes. If the cubes are minterms,
then an optimum compatible coloring of G I (f) is also
an optimum solution to the logic minimization of func-
tion f . The reason for this is that the minterms can
be grouped in all possible ways to form other cubes,
and the optimum coloring gives the grouping with min-
imum number of implicants. For large functions, how-
ever, it is impractical to create a graph whose nodes
represent minterms, as their number can be in the or-
der of 2n. If the on-set O N (f) consists of arbitrary
cubes, rather than minterms, the resulting graph G I (f)
will have smaller number of nodes. This decreases the
complexity of the minimization problem and speeds up
graph coloring. However, the optimality of the resulting
solution cannot be guaranteed in this case.

We introduce a new class of product implicants, called
Minimally Split Product Implicants, M S I . The M S I
set is obtained by splitting an initial set of cubes I N C
into a smallest possible set of fundamental cubes from
which a minimum cover can be obtained. The main
idea behind the splitting is to reshape a set of cubes
in the initial cover into a new set of cubes from which
all prime implicants, and therefore all Boolean covers
of the function, can be constructed. As a result, the
cardinality of the M S I set is significantly smaller than
that of minterms, while it allows to obtain a globally
minimum cover.

Definition 4: Consider a cube C and a set of cubes
S = iss}. Cube C is called splzttable with respect to
set SI if

c = U s,.
S.#C

The procedure to create a set of Minimally Split Prod-
uct Implicants from an arbitrary set of input cubes
I N C is outlined below. Each cube in the initial cover of
f is examined by computing the consensuses (CONS)
of this cube with all other cubes, and checking if the
cube is splittable. The splitting is repeated recursively,
until the cubes cannot be split any further.

create-msi(I N C)
Initialize: M S I = 0.
Make cubes in I N C mutuallv disjoint;
For each cube CC E I N C d o :

Find a set of coiiseiisuses, C O N S , of CC with I N C ;
Find a set of products, P R O D , of CC with C O N S ;
I f CC is splittable w.r.to PROD then

else M S I = MSI U C C .
M S I = i l l S I U splat_product(P R O D)

end{for each}
Return (M S I) .

263

split -product(PROD)
Initialise: R = 0.
For each cube EC E PROD do:

Find a set of products, APROD, of EC with PROD;
If EC is splittable then

else
R = R U rpZi t -pduct (APROD)

if 3 cube C, splittable, s.t. EC E C then
R = R U E C

end{for each}
Return (R).

Example 2: Consider the multiple-valued input func-

X(')Yt3) . Fig. l (a) shows the input set of cubes, I N C ,
that covers the function. Fig. l(b) - (d) illustrate the
splitting of cube a, and Fig. l(e) - (g) show the split-
ting of the remaining cubes, b, c, and d, respectively.
The resulting M S I set is shown in Fig. l(h).

tion f = x{%W)y{o) + ~ I % 1 3 3) y (l) + x I ~) Y { ~) +

X X X

(a) INC (b) CONS for cube a (c) PROD for cube a

X

(d) cubea split

X

(e) cubeb split

X

X

(a) cube d (h) the MSI set

Figure 1: Generation of the M S I set.

In general, the set of cubes created with this algorithm
may not be disjoint. As a result, its cardinality may
be smaller than that of the Disjoint Minimal Product
Implicant set introduced in PALMINI [Ngu87]. This, in
turn, leads to a faster graph coloring and, consequently,
to a faster logic minimisation.

Finally, we have the following theorem which forms the
basis for our multiple-valued logic minimisation. It

holds for both completely and incompletely specified
functions.

Theorem 2: An optimum solution to a compatible
graph coloring of graph G I (f) , whose nodes correspond
to a set of Minimally Split Product Implicants of func-
tion f , gives a minimum cardinality cover of f.

5. The Algorithm

Input to the algorithm is an arbitrary set of cubes spec-
ified by the sets O N (f) and D C (f) . The O F F (f) set
is then obtained from the two sets by complementation.
The cubes in O N (f) are expanded to larger cubes to
reduce complexity of the procedure. During the expan-
sion process, the off-cubes, dc-cubes and the expanded
on-cubes are used to block further expansion. Option-
ally, the dc cubes may also be expanded. A set of Min-
imally Split Product Implicants and the corresponding
graph of incompatibility of implicants, G I (f) , is con-
structed. Our graph coloring algorithm of G I (!) pre-
serves compatibility of implicants and allows for multi-
coloring, whereby each node can be assigned more than
one color. As a result, the cubes in the final cover may
overlap with each other, which further contributes to
the minimisation of literal count.

Example 3: Consider again the function f in Example
2. The set of Minimally Split Product Implicants o f f
is shown in Fig. 2(a); Fig. 2(b) shows the graph G I (f)
constructed with this set of implicants. This graph can
be colored with three colors, that correspond to the
three implicants in the minimum cover of f , shown in
Fig. 2(c)

f = x(O>3)yIoJ) + X(l)y(lJ l + x(2ly{",3)*

Each implicant is a compatible set of cubes, and the
solution is optimum. For comparison, if the function
were minimbed using the I N C set, instead of M S I ,
the minimum number of colors needed to properly color
the G I (f) graph would be four.

6. Results and Conclusions

The algorithm has been implemented as a computer
program UMini, written in C. The input to the program
is consistent with Espresso-MV. UMini has been tested
on a number of benchmark examples, and compared
to Espresso-MV. The preliminary results are given in
Table I, showing the CPU time on a VAX 11/785 com-
puter. The last column in the table indicates the ratio
of the number of Minimally Split Product Implicants
to the number of minterms for a given function. Notice
that for large functions this ratio is significantly smaller
than 1. These results indicate that UMini is faster than

264

X Y
a1 = 1001 1000

a2 = 0010 1000
b2 = 0100 0100
c = 0100 0010
d = 0010 0001

bl = 1001 0100

(a) Minimally Split Product lmplicant set

Espre
final
-

X

D-MV
time

Figure 2: Minimisation with the MSI set.

Espresso-MV for sparse functions, but slower for dense
functions. We also observed that UMini was faster than
Espresso-MV on functions with multiple-valued, rather
than binary, inputs.

We are currently working on a new version of UMini.
In this new program essential and secondary essential
prime implicants are extracted before generating graph
G l (f) , and a set of input cubes is allowed to be nondis-
joint.

Our approach to multiple-valued minimization, pre-
sented in this paper, is quite general and can be used
for a larger class of logic synthesis problems, such as
state encoding, boolean decomposition, and multi-level
minimisation Existence of parallel and distributed algo-
rithms for graph coloring makes this approach particu-
larly attractive.

References

[CieBQ] M.J. Ciesielski, S. Yang and M.A. Perkowski,
“Multiple-valued Minimization Based on Graph Color-
ing”, Technical Report, TR-89-CSE-4, Dept. of Electri-
cal and Computer Engineering, University of Massachusetts,
Amherst, 1989.

[DeM86] G. De Micheli, “Symbolic Design of Combina-
tional and Sequential Logic Circuits Implemented by Two-
Level Logic Macros”, IEEE Transactions on Computer-
Aided Design, Vol. CAD-5, No. 4, Oct. 1986, pp. 597-616.

[Dev88] S. Devadas, A.R. Wang, A.R. Newton, and A.
Sangiovanni-Vincentelli, IEEE International Conference on
Computer-Aided Design, Digest of Technical Papers, 1988,

dec
plnl
pla2
pla3
fsml
fsm2
fsm3
fsm4
fsnr5
pla4
exor6
newbyte
co l4
bbtas
dk14
S S

dk512
bbara
ex6
wim
dc 1
rd73
t 3

-
iilit.
terms

19
8

43
19
14
28
12
28
40

197
31

8
14
24
56
20
30
60
34
10
15

147
148

-

-

-
U h -

final
terms

9
5

33
12
10
13
10
20
32

197
31

8
14

2
27
17
12
6

25
9

10
127
33

-
ni
t ime

sec
0.2
0.3
7.0
1.1
0.1
1.1
0.1
2.1
1.9

11.8
0.4
0.1
0.4
0.1
2.2
0.3
0.2
0.2
2.6
1.5
1.5

64.2
19.7

7

-

-

terms
10
6
33
12
10
13
10
20
32

107
31

8
14

2
27
17
12
6

25
9
0

127
33

-

-

sec
0.2
0.3

67.9
19.9
0.3
1.5
0.3
2.1
2.2

17.2
0.8
0.2
0.8
0.2
2.4
0.5
0.3
0.2
2.6
1.2
0.8

17.2
3.9

- -
ratio
0.684
-
0.600
o.ox
0.009
0.714
0.058
0.833
0.213
0.800
l.l>IIO
1 .Of I O
1.000
1.000
0.50f I
0.207
0.850
0.923
0.222
0.058
0.584
0.638
0.740
0.017 -

Table 1: Results

pp. 290-293.

[Hon74] S.J. Hong, R.G. Cain and D.L. Ostapko, “MINI: A
Heuristic Approach for Logic Minimization”, IBM Journal
of Research and Development, Sept. 1974, pp. 443-458.

[Ngu87] L. Nguyen, M.A. Perkowski and N.B. Goldstein,
“PALMINI - Fast Boolean Minimiser for Personal Comput-
ers”, Proc. 24th. ACM/IEEE Design Automation Confer-
ence, 1987, pp. 615-621.

[Rud87] R.L. Rudell and A. Sangiovanni-Vincentelli,
“Multiple-Valued Minimization for PLA Optimization”,
IEEE Transactions on Computer-Aided Design, Vol. CAD-
6, No. 5, Sept. 1987, pp. 727-750.

[Sas8l] T. Sasao, “Multiple-Valued Decomposition of Gen-
eralized Boolean Functions and the Complexity of Pro-
grammable Logic Arrays”, IEEE Transactions on Comput-
ers, Vol. C-30, No. 9, Sept. 1981, pp. 635-643.

[Sa8841 T. Sasao, “Input Variable Assignment and Output
Phase Optimization of PLA’s”, IEEE Transactions on Com-
puters, Vol. C-33, No. 10, Oct. 1984, pp. 879-894.

[Yan89a] S. Yang and M.J. Ciesielski, “A Generalized PLA
Decomposition with Programmable Encoders”, Proc. Inter-
national Workshop on Logic Synthesis, MCNC, May 1989.

[Yan89b] S. Yang and M.J. Ciesielski, “On the Relationship
between Input Encoding and Logic Minimization”, Techni-
cal Report, TR-89-CSE-14, Dept. of Electrical and Com-
puter Engineering, University of Massachusetts, Amherst,
1989.

265

